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stable, robust, low abstraction languages 

high abstraction, fast evolving languages

supercomputers runs only on CPUs 

+

cloud ready natively runs on GPUs

+

Interfacing ocean models with DL frameworks (1/3)



Input

Output

step n+1

step n

+

Interfacing ocean models with DL frameworks (2/3)

Ocean circulation models 
Trainable components  

(closures, error corrections) 



Interfacing ocean models with DL frameworks (3/3)

- OASIS : exchange of 3D data between different codes

- Eophis : simplified deployment of ML models w/ OASIS

- Requires some change to the NEMO code

- Key : portability, domain decomposition 

Work by Alexis Barge at IGE

https://github.com/meom-group/eophis 

A. Barge

https://github.com/meom-group/eophis


Interfacing ocean models with DL frameworks (3/3)

- OASIS : exchange of 3D data between different codes

- Eophis : simplified deployment of ML models w/ OASIS

- Requires some change to the NEMO code

- Key : portability, domain decomposition 

https://github.com/meom-group/eophis  

See eophis tutorial 

next week 

https://github.com/meom-group/eophis


offline learning   

x → 𝒩(x)mapping

from pre-existing data

ℒt + Δt

ℒt + 2Δt ℒt + NΔt

x(t)
y(t)

x(t + N Δt)

y(t + 2 Δt)
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x(t + Δt)
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online learning   

∂t y + G(y) + = fℳNN(y)

along a trajectory  

Online training improves performance, stability, generalisation Frezat et al. 2022; List et al. 2024

(a.k.a : a posteriori, solver-in-the-loop, end-to-end,  
auto-regressive roll-outs)

The (real) challenge of online training (1/2) 



∂ℒ
∂θ

(z, ℳ(y | θ)) =
∂ℳ
∂θ

(y | θ)
∂ℒ
∂ℳ

gradient of the loss 

arg min
θ

ℒ(z, ℳ(y | θ))
target prediction

y(t + Δt) = Em ∘ ⋯ ∘ E1(y(t)) ℳ ≡ E

For time evolving problems, with

Auto-regressive operator (time)

∂ℳ
∂θ

≡
∂E
∂θ

=
∂(Em ∘ ⋯ ∘ E1)

∂θ
=

∂Em

∂Em−1
⋯

∂E2

∂E1

∂E1

∂θ

The gradient of the loss involves tricky without Automatic 
Differenciation (AD) ! 

The (real) challenge of online training (2/2) 



arg min
θ

ℒ(z, ℳ(y | θ))
target prediction

y(t + Δt) = Em ∘ ⋯ ∘ E1(y(t)) ℳ ≡ E

For time evolving problems, with

temporal evolution operator

∂ℳ
∂θ

≡
∂E
∂θ

=
∂(Em ∘ ⋯ ∘ E1)

∂θ
=

∂Em

∂Em−1
⋯

∂E2

∂E1

∂E1

∂θ

The gradient of the loss involves 

AD is readily available in some language

The challenge of online training strategies (2/2) 

tricky without Automatic 
Differenciation (AD) ! 



arg min
θ

ℒ(z, ℳ(y | θ))
target prediction

AD is readily available in some language

Differentiable programming 

- programs composed of differentiable building blocks

- building blocks : trainable and procedural code components 

- trainable end-to-end with gradient based optimisation 


See eg Sapienza et al. 2024
https://arxiv.org/abs/2406.09699

The challenge of online training strategies (2/2) 

But AD used yet

in climate models…

https://arxiv.org/abs/2406.09699


AI-native hybrid geoscientific models   

Kochkov et al. (2024)

https://doi.org/10.1038/s41586-024-07744-y 
https://github.com/google-research/dinosaur 
https://github.com/google-research/neuralgcm 

https://doi.org/10.1038/s41586-024-07744-y
https://github.com/google-research/neuralgcm
https://github.com/google-research/dinosaur


Towards AI-native hybrid climate models ?  

5. 

Next generation numerical 
kernel for NEMO 

Preparing CMEMS to future  
HPC infrastructures

Modelling key processes 
at kilometric scales

Demonstrating impact on 
CMEMS systems 

Integrating model-based 
products and observations

Assessing impact on 
downstream systems 

+ =+ +



Towards AI-native hybrid climate models ?  

5. 

Next generation numerical 
kernel for NEMO 

Preparing CMEMS to future  
HPC infrastructures

Modelling key processes 
at kilometric scales

Demonstrating impact on 
CMEMS systems 

Integrating model-based 
products and observations

Assessing impact on 
downstream systems 

+ =+ +



Irrgang et al. (2021)
Differentiable programming 

in earth system models ?

… for optimising 
- model parameters  
- numerical schemes 
- subgrid closures 
- … 
 

AI-native hybrid climate models ?    
Betting harnessing  
observations &  
hi-fidelity simulations 



Input

Output

step n+1

step n
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Current generation hybrid models 

Ocean circulation models 
Trainable components  

(closures, error corrections) 



A new generation of geoscientific models

Modern code and compute : simple to write, scales, runs on any hardware  

Atmos

Ocean 
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Modern code and compute : simple to write, scales, runs on any hardware  

A new generation of geoscientific models

Atmos

Ocean 



stable, robust, low abstraction languages 

high abstraction, fast evolving languages

Allowing a seamless integration with AI 



stable, robust, low abstraction languages 

high abstraction, fast evolving languages

Allowing a seamless integration with AI 

high abstraction, fast evolving languages

Physics-based modelling Data-driven modelling 



Kochkov et al. (2024)

https://doi.org/10.1038/s41586-024-07744-y 

AI-native hybrid climate models ?   

https://github.com/google-research/dinosaur 
https://github.com/google-research/neuralgcm 

Dinosaur

https://doi.org/10.1038/s41586-024-07744-y
https://github.com/google-research/dinosaur
https://github.com/google-research/neuralgcm
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Total column water, 0-15 days

ERA5 NeuralGCM

AI-native hybrid climate models ?   

Hybrid w/ online : non-blurry forecast + stable simulators (runs ~10 years)  

Kochkov et al. (2024) https://arxiv.org/abs/2311.07222



Differentiable programming 

in earth system models

Eyring, Gentine, et al., 2024 https://doi.org/10.1038/s41561-024-01527-w 


LEGO Land: swap not just 

LEGO land :  
Versatile models allowing 
exploration of advanced 


ML workflows 


Harnessing global  
observations ! 

AI-native hybrid climate models ?   

See P. Gentine’s keynote during  
TRACCS General Assembly 

https://doi.org/10.1038/s41561-024-01527-w


- Why we are augmenting ocean models w/ trained comp.


- Described how this can be done in practice today


- Further progress require deeper recast of our models


- Exploration w/ new generation of AI-native hybrid models 


- Exciting time for cross-disciplinary investigations ! 
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Summary 

AI4PEX M2LINES
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