The plumbing challenges of hybrid modelling

The plumbing challenges of hybrid modelling

Interfacing ocean models with DL frameworks (1/3)

stable, robust, low abstraction languages

high abstraction, fast evolving languages

runs only on CPUs

cloud ready

natively runs on GPUs

Ocean circulation models

Interfacing ocean models with DL frameworks (3/3)

0-	-proje / matter			4 Tool (2 in earth	- 10	+ + 4	171	sit 1
- 0xe (1) 1	aan té 13 fullesante 12 decembre ()	Atlan 10 Pojeta () Secrita	train it is	etniga					
	eophis have		(2) Katelline i	Clarence &	- Y tee 3 - +	0.54.9	1		
	Fran - Pitturies Office	G. state for	(a) Leaster -	O Dia +	About				
	🔠 eftelle-berge landes MADELING		-	() NO.	Couple® yithen and b motivity Geoptry	Second Learn	-		
	BB uptruly/montplea	Range for winness in 2.1 (#34)		141 Hourston	come mysen skot	-			
	Br min	Antys for strange of 2.1 (#28)		Sal menti	III manual	And the second			
	Bi anglina.	Name for stress of \$1,454		40.000	494. MOTOLOGICAL				
		And the sense of \$1.0 kills		******	C creme another	÷			
	C anavos	unite propriet		1,000,000	21 Dates provide				
	13 mathatrappen	terms discourses initiative	ka #10	a north age	D Bunes				
	(3) katalogiak	territoria cinterni à biera		1 ****** Apl	W Allow				
	13 CONTRIBUTING INE	Daale CONTROL/DAD.ord) muth sept	States (reprint of a				
	C) LICENSE	and how may		1 merate	Heleance y				
	(2) whether out	Compared Workshold, New York, New Yo		-	to state Care				
	C exercises C	Names for stress of \$11,000		(and present).	- 1 million				
	121 BEADAVE . Or Art Summe			× =	Paskagea				
	Ecphis				No. or included independent Automation processing				
	Constitution present		100		Feddredan				

- OASIS : exchange of 3D data between different codes
- Eophis : simplified deployment of ML models w/ OASIS
- Requires some change to the NEMO code
- Key : portability, domain decomposition

https://github.com/meom-group/eophis

Interfacing ocean models with DL frameworks (3/3)

O meom-group / exphils		Q. Type () to search	8 · · · O n 🗗 🌡			
ade 😳 Issues (15 🛛 🕅 Pull request	s 🗣 Discussions 💿 Actions 🖽 Pr	rojects 🛈 Security 🖂 Inei	yhts 🛞 Settings			
eophis Hand		🖉 Edit Pins + 🛛 🛇 Unwatch : S	. ∀ Fork 1 + 12 Star 9 +			
main + P 6 Branches 🛇 6 Tays	Q. Go to file	1 + O Code -	About			
alexis-barge Update README.mit	s100	eli last norm 🕤 198 Commits	Couple Python and Machine Learning models with Geophysical simulation codes through DASIS @ cophis.readthedics.jojen/lefest/			
github/workflows	Marge for release v1.0.1 (#58)	last month				
docs.	Merge for release v1.0.5 (#38)	last michtly				
eophis	Merge for release v1.0.1 (#58)	last month	MrT loanse Cite this repository + Activity Costom properties			
testa.	Merge for release v1.0.1 (#38)	last month				
gitignore	update pitignore	2 years ago				
readthedocs yaml remove dependencies installation for RTD 4 ms			12 Satura			
GITATION of	complete citations infes	4 months ago	V 1los			
CONTRIBUTING.md	Create CONTRIBUTING mit	3 months ago	Report repository			
) LICENSE	add Scenas	2 years ago	Releases a			
README.md	Update README.red	last month	5 VL0.1 (Latert)			
2 ayproject.tomi	Merge for release v1.0.1 (#58)	last month	+ 2 releases			
BEADME O MIT Scence		/ =	Packages			
Foohis			No onchages autointed hubblich olor find castage			
Lopino			Languages			
Present Address of the second second			Python (19.2%) Other 0.7%			
Exphile is a collection of tools to ease Learning components) within Fortran	the deployment of Python scripts (as pr /C geoscientific models through OASIS.	re-trained Machine				
Also it is the currently oldest know	n snake ancestra (2023)					
Strategy						
CASIS is a parallelized Fortran coupli executables. Last releases provided 0 homogeneously written codes. Basic	ng library that performs field exchanges 2 and Python APIs, which enable couplin ally. Enghis allows to:	between coupled g between non-				

- OASIS : exchange of 3D data between different codes
- Eophis : simplified deployment of ML models w/ OASIS
- Requires some change to the NEMO code
- Key : portability, domain decomposition

https://github.com/meom-group/eophis

The (real) challenge of online training (1/2) online learning

offline learning

from pre-existing data

Online training improves performance, stability, generalisation Frezat et al. 2022; List et al. 2024

 $\partial_t \mathbf{y} + G(\mathbf{y}) + \mathcal{M}_{NN}(\mathbf{y}) = f$

along a trajectory

(a.k.a : a posteriori, solver-in-the-loop, end-to-end, auto-regressive roll-outs)

The (real) challenge of online training (2/2)

For time evolving problems, with

$$\mathbf{y}(t + \Delta t) = E_m \circ \cdots \circ E_1(\mathbf{y}(t))$$

The gradient of the loss involves

$$\frac{\partial \mathscr{M}}{\partial \theta} \stackrel{}{=} \frac{\partial E}{\partial \theta} \stackrel{}{=} \frac{\partial (E_m \circ \cdots \circ E_1)}{\partial \theta}$$

 $\frac{\partial \mathscr{L}}{\partial \theta} (\mathbf{Z}, \mathscr{M}(\mathbf{y} \mid \theta)) = \frac{\partial \mathscr{M}}{\partial \theta} (\mathbf{y} \mid \theta) \frac{\partial \mathscr{L}}{\partial \mathscr{M}}$

gradient of the loss

 $\mathcal{M} \equiv E$ Auto-regressive operator (time)

> tricky without Automatic Differenciation (AD) !

 $\partial E_m \quad \partial E_2 \ \partial E_1$ $\frac{\partial E_{m-1}}{\partial E_{1}} \frac{\partial E_{1}}{\partial \theta}$

The challenge of online training strategies (2/2)

For time evolving problems, with

$$\mathbf{y}(t + \Delta t) = E_m \circ \cdots \circ E_1(\mathbf{y}(t))$$

The gradient of the loss involves

$$\frac{\partial \mathscr{M}}{\partial \theta} \stackrel{}{=} \frac{\partial E}{\partial \theta} \stackrel{}{=} \frac{\partial (E_m \circ \cdots \circ E_1)}{\partial \theta}$$

AD is readily available in some language

 $\mathcal{M} \equiv E$ temporal evolution operator

> tricky without Automatic Differenciation (AD) !

 $\partial E_m \quad \partial E_2 \ \partial E_1$ $\frac{\partial E_{m-1}}{\partial E_1} \frac{\partial E_1}{\partial \theta}$

The challenge of online training strategies (2/2)

See eg Sapienza et al. 2024 https://arxiv.org/abs/2406.09699

AD is readily available in some language

Supervised or residual loss L

But AD used yet in climate models...

Differentiable programming

- programs composed of differentiable building blocks - building blocks : trainable and procedural code components - trainable end-to-end with gradient based optimisation

Al-native hybrid geoscientific models

Article Neural general circulation models for weather and climate

https://doi.org/10.1038/s41586-024-07744-y Dmitrii Kochkov¹⁸⁵⁵, Janni Yuval¹⁸⁵⁵, Ian Langmore¹⁸, Peter Norgaard¹⁸, Jamie Smith¹⁸ Griffin Mooers', Milan Klöwer', James Lottes', Stephan Rasp', Peter Düben', Sam Hatfield', Received: 13 November 2023 Peter Battaglia⁴, Alvaro Sanchez-Gonzalez⁴, Matthew Willson⁴, Michael P. Brenner¹⁵ & Accepted: 15 June 2024 Stephan Hover¹⁶¹ Published online: 22 July 2024 General circulation models (GCMs) are the foundation of weather and climate Open access prediction¹³. GCMs are physics-based simulators that combine a numerical solver Check for updates for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting34. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. Solving the equations for Earth's atmosphere with general circula- demonstrating state-of-the-art deterministic forecasts for 1- to 10-day weather prediction at a fraction of the computational cost of traditional tion models (GCMs) is the basis of weather and climate prediction¹². Over the past 70 years, GCMs have been steadily improved with better models14. Machine-learning atmospheric models also require considernumerical methods and more detailed physical models, while exploit- ably less code, for example GraphCast³ has 5,417 lines versus 376,578 ing faster computers to run at higher resolution. Inside GCMs, the lines for the National Oceanic and Atmospheric Administration's FV3 unresolved physical processes such as clouds, radiation and precipi- atmospheric model19 (see Supplementary Information section A for tation are represented by semi-empirical parameterizations. Tuning details). GCMs to match historical data remains a manual process³, and GCMs Nevertheless, machine-learning approaches have noteworthy retain many persistent errors and biases*⁸. The difficulty of reducing limitations compared with GCMs. Existing machine-learning models uncertainty in long-term climate projections' and estimating distribu- have focused on deterministic prediction, and surpass deterministic tions of extreme weather events³⁰ presents major challenges for climate unmerical weather prediction in terms of the aggregate metrics for mitigation and adaptation¹¹. which they are trained^{3,4}. However, they do not produce calibrated Recent advances in machine learning have presented an alter-uncertainty estimates⁴, which is essential for useful weather forecasts¹. native for weather forecasting 14.11.13. These models rely solely on Deterministic machine-learning models using a mean-squared-error machine-learning techniques, using roughly 40 years of historical loss are rewarded for averaging over uncertainty, producing unrealisdata from the European Center for Medium-Range Weather Forecasts tically blurry predictions when optimized for multi-day forecasts³³¹. (ECMWF) reanalysis v5 (ERA5)²⁴ for model training and forecast initiali-Unlike physical models, machine-learning models misrepresent derived zation. Machine-learning methods have been remarkably successful. (diagnostic) variables such as geostrophic windth. Furthermore,

Google Research, Mountain View, CA, USA, "Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA, "European Centre for Medium-Range Weather Forecasts, Reading, UK. "Google DeepMind, London, UK. "School of Engineering and Applied Sciences, Harvard Drivensity, Cambridge, MA, USA. "These authors contributed equally Dmbni Kochkov, Janni Yuval, tan Langmone, Peter Norgaand, Jamie Smith, Stephan Hoyer. 🧤 mail: dkochkov@google.com; janniyuval@google.com; shoyer@google.com

1060 | Nature | Vol 632 | 29 August 2024

https://doi.org/10.1038/s41586-024-07744-y

Kochkov et al. (2024)

(a)

Inputs

Outputs

https://github.com/google-research/dinosaur https://github.com/google-research/neuralgcm

Towards Al-native hybrid climate models ?

5.

Towards Al-native hybrid climate models ?

Al-native hybrid climate models ?

Earth System Observation Data

Ground truth for the validation of process-based models

Physical Equation-driven Earth and Climate Modelling

Main tool for quantifying the Earth's state under ongoing anthropogenic forcing

Contains persistent error sources

Process-based models and neural networks will be coupled as actively learning hybrid models

Irrgang et al. (2021)

Successive research on explainable AI will make hybrid models more physically interpretable Combining the advantages of process-based with machine learning models

Neural Earth System Modelling

Available data pool for neural network training environments

> Earth Data-driven Machine Learning

Highly specialized agents that uncover hidden patterns and geophysical quantities

Lack of process knowledge

Hybrid models start to outperform the predictive power of traditional models

Betting harnessing observations & hi-fidelity **simulations**

... for optimising

- model parameters
- numerical schemes
- subgrid closures

Differentiable programming in earth system models ?

Ocean circulation models

•••

 \equiv

O

veros.readthedocs.io/en/latest/

① ① + ①

0

.ö. ⊡

Veros 1.5.1+51.g4039f76.dirty documentation

Versatile Ocean Simulation in Pure Python

Veros, *the versatile ocean simulator*, aims to be the swiss army knife of ocean modeling. It is a fullfledged primitive equation ocean model that supports anything between idealized toy models and realistic, high-resolution, global ocean simulations. And because Veros is written in pure Python, the days of struggling with complicated model setup workflows, ancient programming environments, and obscure legacy code are finally over.

In a nutshell, we want to enable high-performance ocean modelling with a clear focus on flexibility and usability.

Veros supports a NumPy backend for small-scale problems, and a high-performance JAX backend with CPU and GPU support. It is fully parallelized via MPI and supports distributed execution on any number of nodes, including multi-GPU architectures (see also our benchmarks).

The dynamical core of Veros is based on pyOM2, an ocean model with a Fortran backend and Fortran and Python frontends.

If you want to learn more about the background and capabilities of Veros, you should check out A short introduction to Veros. If you are already convinced, you can jump right into action, and learn how to get started instead!

Modern code and compute : simple to write, scales, runs on any hardware

Atmos

Ocean

P main - P 9 Branches	01 Tags	Q, Go to file	(t) +	↔ Code +	About			
shoyer and Dinosaur aut	No description, website, o provided.							
github/workflows	github/workflows [dinosaur] add support for Python 3.10 5 months ago							
dinosaur	nosaur Conservative vertical regridding. 14 hours ago							
notebooks	ed Held-Suarez note	book.	5 months ago	& Activity				
🗅 .gitignore	itignore Initial export of Dinosaur 5 months ago				E Custom properties			
CONTRIBUTING.md Initial export of Dinosaur				5 months ago	 ☆ 137 stars ⊙ 6 watching ∞ 8 fords 			
C LICENSE	NSE Initial export of Dinosaur 5 months ago							
C README.md	REA	DME update: Revised	Peport repository					
🗅 conftest.py	Initial export of Dinosaur 5 months ago				Report repository			
🗅 dinosaur-logo.png	dinosaur-logo.png Initial export of Dinosaur				Releases 1			
pyproject.toml Release dinosaur 1.0.0				2 months ago	Release dinosaur 1.0. on May 25			
README Apache-2.0 licen	se			0 =	orimay 2.5			
					Packages			
					in brendes beening			
					Contributors 5			
		5			🌍 🔄 εη 😱			
17		-			Languages			

④ ① + □ ••• D veros.readthedocs.io/en/latest/ Ξ Veros 1.5.1+51.g4039f76.dirty documentation .ö. ⊡ 0 Versatile Ocean Simulation in Pure Python Veros, the versatile ocean simulator, aims to be the swiss army knife of ocean modeling. It is a fullfledged primitive equation ocean model that supports anything between idealized toy models and realistic, high-resolution, global ocean simulations. And because Veros is written in pure Python, the days of struggling with complicated model setup workflows, ancient programming environments, and obscure legacy code are finally over. In a nutshell, we want to enable high-performance ocean modelling with a clear focus on flexibility and usability. Veros supports a NumPy backend for small-scale problems, and a high-performance JAX backend with CPU and GPU support. It is fully parallelized via MPI and supports distributed execution on any number of nodes, including multi-GPU architectures (see also our benchmarks). The dynamical core of Veros is based on pyOM2, an ocean model with a Fortran backend and Fortran and Python frontends. If you want to learn more about the background and capabilities of Veros, you should check out A short introduction to Veros. If you are already convinced, you can jump right into action, and learn how to get started instead! ... because the Baroque is over. See also We outline some of our design philosophy and current direction in this blog post. START HERE A short introduction to Veros The vision Features Getting started Installation Setting up a model Running Veros Enhancing Veros Advanced installation Using JAX

□ README MIT license 🖉 🗄	Deployments 408	
Oceananigans.jl	github-pages 5 years ago + 407 deployments	
E Fast and friendly ocean-flavored Julia software for simulating incompressible fluid dynamics in	Languages	
Cartesian and spherical shell domains on CPUs and GPUs.	Julia 97.9% Mathematica 1.6%	
Inters.//cima.grunub.io/oceananigansbocumentation/stable	Other 0.5%	
repo status Active License Mit Ask us anything ColPrac Contributor's Guide JOSS 10.21103/joss.02018		
C latest version v0.95.8 documentation stable release documentation in development		
Downloads 369/month Total Downloads 8,840		
Buildkite CPU+GPU		
Oceananigans is a fast, friendly, flexible software package for finite volume simulations of the nonhydrostatic and hydrostatic Boussinesq equations on CPUs and GPUs. It runs on GPUs (wow, fast!), though we believe Oceananigans makes the biggest waves with its ultra-flexible user interface that makes simple simulations easy, and complex, creative simulations possible.		
Occurrence and herein calls, and company area and herein external collaborators		
Oceananigans. Ji is developed by the <u>climate Modeling Alliance</u> and heroic external collaborators.		
Contents		
Contents		
Installation instructions		
Running your first model		
The Oceananigans knowledge base		
• Citing		
Contributing		
Movies Deep convection		
e Free convection		
Winds blowing over the ocean		
 Free convection with wind stress 		
Performance benchmarks		
Installation instructions		
Oceananigans is a registered Julia package. So to install it.		
1 Download Julia (version 1.9 or later)		
2. Loursely hills and the		
2. Launch Julia and type		
julia <mark>> using</mark> Pkg		

Allowing a seamless integration with Al

stable, robust, low abstraction languages

high abstraction, fast evolving languages

Allowing a seamless integration with Al

Data-driven modelling

high abstraction, fast evolving languages

Physics-based modelling

high abstraction, fast evolving languages

Neural general circulation models for weather and climate

https://doi.org/10.1038/s41586-024-07744-y Dmitrii Kochkov¹⁸⁵⁵, Janni Yuval¹⁸⁵⁵, Ian Langmore¹⁸, Peter Norgaard¹⁸, Jamie Smith¹⁸ Griffin Mooers', Milan Klöwer', James Lottes', Stephan Rasp', Peter Düben', Sam Hatfield', Received: 13 November 2023 Peter Battaglia⁴, Alvaro Sanchez-Gonzalez⁴, Matthew Willson⁴, Michael P. Brenner¹⁵ & Accepted: 15 June 2024 Stephan Hover¹⁶¹ Published online: 22 July 2024 General circulation models (GCMs) are the foundation of weather and climate Open access prediction¹³. GCMs are physics-based simulators that combine a numerical solver Check for updates for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting34. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system. Solving the equations for Earth's atmosphere with general circula- demonstrating state-of-the-art deterministic forecasts for 1- to 10-day weather prediction at a fraction of the computational cost of traditional tion models (GCMs) is the basis of weather and climate prediction¹². Over the past 70 years, GCMs have been steadily improved with better models14. Machine-learning atmospheric models also require considernumerical methods and more detailed physical models, while exploit- ably less code, for example GraphCast³ has 5,417 lines versus 376,578 ing faster computers to run at higher resolution. Inside GCMs, the lines for the National Oceanic and Atmospheric Administration's FV3 unresolved physical processes such as clouds, radiation and precipi-atmospheric model12 (see Supplementary Information section A for tation are represented by semi-empirical parameterizations. Tuning details). GCMs to match historical data remains a manual process³, and GCMs Nevertheless, machine-learning approaches have noteworthy retain many persistent errors and biases**. The difficulty of reducing limitations compared with GCMs. Existing machine-learning models uncertainty in long-term climate projections' and estimating distribu- have focused on deterministic prediction, and surpass deterministic tions of extreme weather events³⁰ presents major challenges for climate unmerical weather prediction in terms of the aggregate metrics for mitigation and adaptation¹¹. which they are trained^{3,4}. However, they do not produce calibrated Recent advances in machine learning have presented an alter- uncertainty estimates*, which is essential for useful weather forecasts'. native for weather forecasting 14.11.13. These models rely solely on Deterministic machine-learning models using a mean-squared-error machine-learning techniques, using roughly 40 years of historical loss are rewarded for averaging over uncertainty, producing unrealisdata from the European Center for Medium-Range Weather Forecasts tically blurry predictions when optimized for multi-day forecasts³³¹. (ECMWF) reanalysis v5 (ERA5)²⁴ for model training and forecast initiali-Unlike physical models, machine-learning models misrepresent derived zation. Machine-learning methods have been remarkably successful. (diagnostic) variables such as geostrophic windth. Furthermore, Google Research, Mountain View, CA, USA, "Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA, "European Centre for Medium-Range Weather Forecasts, Reading, UK. "Google DeepMind, London, UK. "School of Engineering and Applied Sciences, Harvard Drivensity, Cambridge, MA, USA. "These authors contributed equally Dmbni Kochkov, Janni Yuval, tan Langmone, Peter Norgaard, Jamie Smith, Stephan Hoyer. 🤏 mail: dkochkov@google.com; janniyuval@google.com; shoyer@google.com

1060 | Nature | Vol 632 | 29 August 2024

https://doi.org/10.1038/s41586-024-07744-y

(a)

Inputs

Outputs

Kochkov et al. (2024)

https://github.com/google-research/dinosaur https://github.com/google-research/neuralgcm

Al-native hybrid climate models ?

Kochkov et al. (2024)

https://arxiv.org/abs/2311.07222

ERA5

Hybrid w/ online : non-blurry forecast + stable simulators (runs ~10 years)

Total column water, 0-15 days

NeuralGCM

Al-native hybrid climate models ?

See P. Gentine's keynote during

TRACCS General Assembly

Earth Observations

Km-scale climate models

LES

DNS

LEGO land :

Versatile models allowing exploration of advanced ML workflows

> Harnessing global observations !

Hybrid (physics+ML) ESMs

Eyring, Gentine, et al., 2024 <u>https://doi.org/10.1038/s41561-024-01527-w</u>

Differentiable programming in earth system models

_

- Described how this can be done in practice today
- Further progress require deeper recast of our models
- Exploration w/ new generation of Al-native hybrid models

Integrating model-based - Exciting time for cross-disciplinary investigations !

d

n

Summary

Why we are augmenting ocean models w/ trained comp.

References

• Frezat et al. (2021). Physical invariance in neural networks for subgrid-scale scalar flux modeling. https://doi.org/10.1103/PhysRevFluids.6.024607

• Frezat et al. (2022) A posteriori learning for quasi-geostrophic turbulence parametrization, JAMES. 14. <u>https://doi.org/10.1029/2022MS003124</u>

• Frezat et al. (2024) Gradient-free online learning of subgrid-scale dynamics with neural emulators, sub., <u>https://doi.org/10.48550/arXiv.2310.19385</u>

• Yan (2024). Adjoint-based online learning of two-layer quasi-geostrophic baroclinic turbulence. arXiv. <u>https://doi.org/10.48550/arXiv.2411.14106</u>

