The plumbing challenges of hybrid modelling
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Interfacing ocean models with DL frameworks (1/3)

CICIEN-—

supercomputers runs only on CPUs

stable, robust, low abstraction languages

high abstraction, fast evolving languages cloud ready hatively runs on GPUs



Interfacing ocean models with DL frameworks (2/3)
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Interfacing ocean models with DL frameworks (3/3)
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- OASIS : exchange of 3D data between different codes

- Eophis : simplified deployment of ML models w/ OASIS

e - - Requires some change to the NEMO code
. EEEE— + - Key : portability, domain decomposition

https://github.com/meom-group/eophis


https://github.com/meom-group/eophis

Interfacing ocean models with DL frameworks (3/3)

| oAsIs API
a, b
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Languages
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OASIS API

See eophis tutorial
next week

Fortran Process 1

Fortran Process 2

Fortran Process 3

—~>

P

Python Process 1

Python Process 2

- OASIS : exchange of 3D data between different codes

- Eophis : simplified deployment of ML models w/ OASIS

- Requires some change to the NEMO code

- Key : portability, domain decomposition


https://github.com/meom-group/eophis

The (real) challenge of online training (1/2)

offline learning
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from pre-existing data

Online training improves performance, stability, generalisation

online learning

1
:gt+2At v Ly NA

X(7)
y(®)

y(t+ 2 Ar) y(t + N Ar)
y(t + At)

0,y + G(y) + My =f

along a trajectory

(@.k.a : a posteriori, solver-in-the-loop, end-to-end,
auto-regressive roll-outs)

Frezat et al. 2022; List et al. 2024



The (real) challenge of online training (2/2)

target prediction

: \ — 0 M Y
arg min £ (z, 4 (y | 0)) — (. My | 0) = — (v | O)—
v

gradient of the loss

For time evolving problems, with

Y(t + Af) = Em O «e+ 0 El(y(t)) M = E  Auto-regressive operator (time)

The gradient of the loss involves tricky without Automatic
Differenciation (AD) !

a% - aE B a(Em O ecoo OEI) B aEm 0E2 aEl

00 ~ 00 00  0E, , OE, 00



The challenge of online training strategies (2/2)

target prediction

/ AD is readily available in some language

arg min le”}z, M(y | 0))
0

4

julia

For time evolving problems, with

y(t + At) — Em O +e+ O El(Y(t)) M = E temporal evolution operator

The gradient of the loss involves tricky without Automatic
Differenciation (AD) !

a% - aE B a(Em O ecoo OEl) B aEm 0E2 aEl

00 ~ 00 00  0E, , OE, 00



The challenge of online training strategies (2/2)

target prediction

/ AD is readily available in some language

N\
arg min £(z, A (y | 0))
0

julia

D . v y y\ //_//\\7
!‘\ vxl-’ |  | f (X,-; 0) \ () / P, (u(n),v) P,(i1,,v) P4, _,,v) \\ui(t+ At)/
SiaRiSEd F But AD used yet
residual loss L INn climate modaels...
A df/ 06 oP\/dy;  oP,/ou, oP,/ou,,_, \au{t-l- At)7

Differentiable programming

- programs composed of differentiable building blocks
See eg Sapienza et al. 2024

https://arxiv.ora/abs/2406,09699 - building blocks : trainable and procedural code components

- trainable end-to-end with gradient based optimisation


https://arxiv.org/abs/2406.09699
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Neural general circulation models for

weather and climate
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General circulation models (GOMs) are the foundation of weather and climate
prediction', GCMs are physics-based simulators that combine a numerical solver

for large-scale dynamics with tuned representations for small-scale processes such as
cloud formation. Recently, machine-learning models trained on reanalysis data have
achieved comparable or better skill than GCMs for deterministic weather forecasting™,
However, these models have not demonstrated improved ensemble forecasts, or
shown sufficient stability for long-term weather and climate simulations. Here we
present a GCM that combines a differentiable solver for atmospheric dynamics with
machine-learning components and show that it can generate forecasts of deterministic
weather, ensembie weather and climate on par with the best machine-learning and
physics-based methods. NeuralGCM Is competitive with machine Jearning models for
one- to ten-day forecasts, and with the European Centre for Medium-Range Weather
Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea
surface temperature, NeuralGCM can accurately track climate metrics for multiple
decades, and climate forecasts with 140-kilometre resolution show emergent
phenomena such as realistic frequency and trajectories of tropical cyclones. For both
weather and climate, our approach offers orders of magnitude compautational savings
over conventional GCMs, although our model does not extrapolate tosubstantially
different future climates. Our results show that end-to-end deep learning is compatible
with tasks performed by conventional GCMs and can enhance the Jarge-scale physical

simulations that are essential for understanding and predicting the Earth system.

Solving the equations for Earth’s atmosphere with general cireula-
tion models {GCMs) is the basis of weather and climate prediction™.
Over the past 70 years, GCMs have been steadily Improved with better
numerical methods and more detailed physical models, while exploit-
ing faster computers to run at higher resolution. Inside GCMs, the
unresolved physical processes such as clouds, radiation and precipi-
tatkon are represented by semd-empirical parameterizations, Tuning
GCMs to match historical data remains a manual process’, and GCMs
retain many persistenterrors and biases® *. The difficulty of reducing
uncertalnty inlong-term climate projections® and estimating distribu-
tions of extreme weather events™ presents major challenges for climate
mitigation and adaptation.

Recent advances in machine learning have presented an alter-
native for weather forecasting’* "', These models rely solely on
machine-learning techniques, using roughly 40 years of historical
data from the European Center for Medium: Range Weather Forecasts
(ECMWF) reanalysis vS (ERAS)™ For model training and forecast initiali-
zation, Machine-learning methods have been remarkably successful,

demonstrating state-of the-art deterministic forecasts for 1 to 10-day
weather predictionat afraction of the computational cost of traditional
models"*, Machine-leaming atmospheric models also require consider-
ably less code, for example GraphCast” has 5,417 lines versus 376,578
lines for the National Oceanic and Atmospheric Administration’s FV3
atmospheric model” (see Supplementary Information section A for
details).

Nevertheless, machine-learning approaches have noteworthy
limitations compared with GCMs. Existing machine-learning models
have focused on deterministic prediction, and surpass deterministic
numerical weather prediction in terms of the aggregate metrics for
which they are trained . However, they do not produce calibrated
uncertainty estimates’, which is essential for useful weather forecasts',
Deterministic machine-fearning models using a mean-squared-crror
loss are rewarded for averaging aver uncertainty, producing unrealis-
tically blurry predictions when optimized for multi-day forecasts™'’,
Unlike physical models, machine-fearning models misrepresent derived
(diagnostic) variables such as geostrophic wind™. Furthermore,
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Towards Al-native hybrid climate models ?
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Ground truth for the validation of
process-based models

Physical Equation-driven
Earth and Climate Modelling

Main tool for quantifying the Earth's
state under ongoing anthropogenic
forcing

Contains persistent error sources

Process-based models and
neural networks will be coupled
as actively learning hybrid models

Earth System Observation Data

Available data pool for neural
network training environments

Earth Data-driven
Machine Learning

Highly specialized agents that
uncover hidden patterns and
geophysical quantities

Lack of process knowledge

Hybrid models start to
outperform the predictive
power of traditional models

Successive research on explainable Al will make

hybrid models more physically interpretable

Combining the advantages of process-based

Irrgang et al. (2021)

with machine learning models

Neural Earth System Modelling

Al-native hybrid climate models ?

Betting harnessing
observations &
hi-fidelity simulations

... for optimising
- model parameters
- numerical schemes
- subgrid closures

Differentiable programming
In earth system models ?



Current generation hybrid models
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A new generation of geoscientific models

@ veros.readthedocs.iofen/latest/

Veros 1.5.1+51.94039f76.dirty documentation

Versatile Ocean Simulation in Pure
Python

¥ main -

F 9 Branches ©1 Tags

& clima.github.io/OceananigansDocumentatic e

€ shoyerand Dinosaur authors Conser @ « 3763043

<> Code -~

1) 35 Commits

About

No description, website, or [of

provided

 _githubjworkflows [dinasaur] add support for Pythen 310 5 moanths ago v Readme
Veros, the versatile ocean simulator, aims to be the swiss army knife of ocean modeling. It is a full- @ dinosaur Conservative vertical regridding 14 hours ago ; Kinaikin 0 [Rassa
fledged primitive equation ocean model that supports anything between idealized toy models and
realistic, high-resolution, global ocean simulations. And because Veros is written in pure Python, the = notebooks Added Held-Suarez notebook. Smonthsago: A, Activity
days of struggling with complicated model setup workflows, ancient programming environments, and ™ .gitignore Initial export of Dinosaur 5 months ago & Custom properties
obscure legacy code are finally over. 2 = _ = : = A 137 stars
] CONTRIBUTING.md Initial export of Dinosaur Smonthsago W
In a nutshell, we want to enable high-performance ocean modelling with a clear focus on flexibility ™ LICENSE \atlal ax50rt 6F Dindést B fhsathsaan @ 6 watching
and usability. : SRa, E 2 = o 8 focks
. 1 README.md README update: Revised author listt.. 4 months ago
Veros supports a NumPy backend for small-scale problems, and a high-performance JAX backend 3 Report repository
with CPU and GPU support. It is fully parallelized via MPI and supports distributed execution on any (3 conftest.py Initial export of Dinosaur 5 months ago
number of nodes, including multi-GPU architectures (see also our benchmarks). 0 dinosaur-logo.png Initial exoort of Dirosati & months aao  Releases 1

The dynamical core of Veros is based on pyOM?2, an ocean model with a Fortran backend and Fortran
and Python frontends.

(3 pyproject.tom! Release dinosaur 1.0.0  Release dinosaur 1.0.0 (L&

A
) Ve

2 months ago

"’. »lI'A

If you want to learn more about the background and capabilities of Veros, you should check out A [0 README 3 Apache-2.0 license g =
short introduction to Veros. If you are already convinced, you can jump right into action, and learn Packages
how to get started instead! No packages published

op .
.. because the '».:t-f)’aw(y e 18 auew.
Contributors 5

GEET

Languages

Atmos

€ Seealso

We outline some of our design philosophy and current direction in this blog post.

START HERE
e A short introduction to Veros
o The vision
o Features
e Getting started
Installation
Setting up a model
Running Veros
o Enhancing Veros
e Advanced installation
o Using JAX

» Jupyter Notebook 2917
e Python 10.9%,

©

©

Ocean

o

, Dinosaur: differentiable dynamics for global
atmospheric modeling

Modern code and compute : simple to write, scales, runs on any hardware



A new generation of geoscientific models

@ veros.readthedocs.iofen/latest/

Veros 1.5.1+51.94039f76.dirty documentation -j¢j- =

Versatile Ocean Simulation in Pure
Python

Veros, the versatile ocean simulator, aims to be the swiss army knife of ocean modeling. It is a full-
fledged primitive equation ocean model that supports anything between idealized toy models and
realistic, high-resolution, global ocean simulations. And because Veros is written in pure Python, the
days of struggling with complicated model setup workflows, ancient programming environments, and
obscure legacy code are finally over.

In a nutshell, we want to enable high-performance ocean modelling with a clear focus on flexibility
and usability.

Veros supports a NumPy backend for small-scale problems, and a high-performance JAX backend
with CPU and GPU support. It is fully parallelized via MPI and supports distributed execution on any
number of nodes, including multi-GPU architectures (see also our benchmarks).

The dynamical core of Veros is based on pyOM?2, an ocean model with a Fortran backend and Fortran
and Python frontends.

If you want to learn more about the background and capabilities of Veros, you should check out A
short introduction to Veros. If you are already convinced, you can jump right into action, and learn
how to get started instead!

1 y  (Of :
.. because the /))aw(y e 18 oue.

€ Seealso

We outline some of our design philosophy and current direction in this blog post.

START HERE
e A short introduction to Veros
o The vision
o Features
e Getting started
o |nstallation
o Setting up a model
o Running Veros
o Enhancing Veros
e Advanced installation

o Using JAX

Modern code and compute : simple to write, scales, runs on any hardware
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A new generation of geoscientific models

@& github.com/CliMA/Oceananigans.jl ) @ d] r @

o CliMA/Oceananigans.jl: £ Julia software for fast, friendly, flexible, ocean-flavored fluid dynamics on CPUs and GPUs

Deployments 402

i

Y] README 52 MIT license V4

& github-pages & years ago

oceananigans.jl + 407 deployments .

#_, Fast and friendly ocean-flavored Julia software for simulating incompressible fluid dynamics in Languages

Cartesian and spherical shell domains on CPUs and GPUs.
https://clima.github.io/OceananigansDocumentation/stable ¢ Julia 97.9% @ Mathematica 1.6%

Other 0.5%
() latest version VBSOS 8 documentation |l development

Oceananigans is a fast, friendly, fiexible software package for finite volume simulations of the
nonhydrostatic and hydrostatic Boussinesq equations on CPUs and GPUs. It runs on GPUs (wow, fast!),
though we believe Oceananigans makes the biggest waves with its ultra-flexible user interface that
makes simple simulations easy, and compiex, creative simulaticns possible.

10SS [10:21105/05%.02018

Oceananigans.jl is developed by the Climate Modeling Alliance and heroic external collaborators.

Contents

 Contents
¢ |[nstallation instructions

* Running your first model

¢ The Oceananigans knowledge base

» Contributing

* Movies
o Deep convection
o Free convection

o Winds blowing over the ocean

o Free convection with wind stress

¢ Performance benchmarks

Installation instructions

Oceananigans is a registered Julia package. So to install it,

1. Download Juilia (version 1.9 or later).

2. Launch Julia and type O C e a n

julia> using Pkg

julia> Pkg.add("Oceananigans")

\ This installs the latest version that's comiatible with iour current environment. Don't foriet to be /

Modern code and compute : simple to write, scales, runs on any hardware



A new generation of geoscientific models

@& github.com/CliMA/Oceananigans.jl e @ ﬂ] + @
2
o CliMA/Oceananigans.jl: £ Julia software for fast, friendly, flexible, ocean-flavored fluid dynamics on CPUs and GPUs 1 0 | - L = B S8 —KE e o = x  OIE B TN e A =
o ~ -
TN % Oceananigansl2gps, ® Ocean models
] README 5 MIT license 7 = Deployments 408 .
-
; & github-pages & years ago * ~ . Atmosphenc mOdels
- " Oceananigansl2gpg, :
Oceananigans.jl Lo 1 01 3 ® Climate models
- N
#_, Fast and friendly ocean-flavored Julia software for simulating incompressible fluid dynamics in Languages | . ) >
Cartesian and spherical shell domains on CPUs and GPUs. 4 ! VEROS g
https://clima.github.io/OceananigansDocumentation/stable ® Juila:97.6% @ Msthematica 1.6% FP64 N
Other 0.5% .
1055 10:2 108710503015 ' | '
() latest version VBSOS 8 documentation it developmant S
= - \.
0 L . :
[Dowriosds 363/montn | o Dowrioeds 8240 = 10" ¢ - ;
A 5 . <
Oceananigans is a fast, friendly, fiexible software package for finite volume simulations of the E ] LICOM3 \ O C e an aIli ans 48 4
nonhydrostatic and hydrostatic Boussinesq equations on CPUs and GPUs. It runs on GPUs (wow, fast!), . * g FP64
though we believe Oceananigans makes the biggest waves with its ultra-flexible user interface that H a dG EM 3
makes simple simulations easy, and compiex, creative simulaticns possible. l ‘ \Oo
Oceananigans.jl is developed by the Climate Modeling Alliance and heroic external collaborators. m 1 O :' ('0 :
: 2 *
Contents . ‘5‘(:? .
&
* Contents i G ‘o “
¢ |Installation instructions . ‘-{“

* Running your first model

5 1HESP (‘5@ OceananigansAP
¢ The Oceananigans knowledge base 10 ': \ \Q(? *

cont LLC4320 f’% -

a2 a2 4

* Contributin ) : . .
s < Increasing Increasing

o Deep convection IPCC . ) —
o @epconvection efflCIency reS()lutl on )

o Winds blowing over the ocean CMIP

o Free convection with wind stress

COSMO » -
= = Z- i o NS & & P S S S | -, ~ U L PP |

resolution | . - : = ;
Installation instructions A~10km 10 10 A~1km 10" A~500m

Oceananigans is a registered Julia package. So to install it, Number Of grid pOintS

1. Download Juilia (version 1.9 or later).

2. Launch Julia and type O C e a n

julia> using Pkg L=

¢ Performance benchmarks

julia> Pkg.add("Oceananigans")

\ This installs the latest version that's comiatible with iour current environment. Don't foriet to be /

Modern code and compute : simple to write, scales, runs on any hardware



A new generation of geoscientific models

& github.com/CliMA/Oceananigans.ijl

©® O

O CliMA/Oceananigans.jl: £ Julia software for fast, friendly, flexible, ocean-flavored fluid dynamics on CPUs and GPUs

] README 5* MIT license Z

Oceananigans.|jl

#_, Fast and friendly ocean-flavored Julia software for simulating incompressible fluid dynamics in
Cartesian and spherical shell domains on CPUs and GPUs.
https://clima.github.io/OceananigansDocumentation/stable

Oceananigans is a fast, friendly, fiexible software package for finite volume simulations of the
nonhydrostatic and hydrostatic Boussinesq equations on CPUs and GPUs. It runs on GPUs (wow, fast!),
though we believe Oceananigans makes the biggest waves with its ultra-flexible user interface that
makes simple simulations easy, and compiex, creative simulaticns possible.

10SS [10:21 105705502618

() latest version |VBO58

documentation | i development

nvaid.

Oceananigans.jl is developed by the Climate Modeling Alliance and heroic external collaborators.

Contents

 Contents
¢ |nstallation instructions

* Running your first model

¢ The Oceananigans knowledge base

» Contributing
* Movies
o_%p convection
o Free convection

o Winds blowing over the ocean

o Free convection with wind stress

¢ Performance benchmarks

Installation instructions

Oceananigans is a registered Julia package. So to install it,

1. Download Juilia (version 1.9 or later).

2. Launch Julia and type

julia> using Pkg

julia> Pkg.add("Oceananigans")

i

Deployments 402
& github-pages 5 years ago

+ 407 deployments

Languages

® Julia 97.9% @ Mathematica 1.6%
Other 0.5%

\ This installs the latest version that's comiatible with iour current environment. Don't foriet to be /

Atmos

—_—

Ocean

B @ github.com/SpeedyWeather/SpeedyWeath:

<

O SpeedyWeather/SpeedyWaeather.jl: Play atmospheric modelling like it's LEGO.

[J README &2 MIT license Va

Ol

\‘\ <
\

AR
T

SpeedyWeather.jl =

J0sS |10:23105/05%.06323 | DOI | 10.5281/zenodo.6510139

SpeedyWeather.jl is a global atmospheric model with simple physics developed as a research
playground with an everything-flexible attitude as long as it is speedy. It is easy to use and easy to
extend, making atmospheric modelling an interactive experience -- in the terminal, in a notebook or
conventionally through scripts. With minimal code redundancies it supports

Dynamics and physics

« Different physical equations (barotropic vorticity, shallow water, primitive equations, with and
without humidity)

« Particle advection in 2D for all equations
« Tracer advection in 2D/3D that can be added, deleted, (de)activated anytime
« Physics parameterizations for cenvection, precipitation, boundary layer, etc.

Numerics and computing

« Different spatial grids (full and octahedral grids, Gaussian and Clenshaw-Curtis, HEALPIx,
OctaHEALPIx)

« Different resolutions (T31 to T1023 and higher, i.e. 400km to 10km using linear, quadratic or cubic
truncation)

« Different arithmetics: Float32 (default), Float64, and (experimental) BFioat16, stochastic rounding
« avery fast and flexible spherical harmonics transform library SpeedyTransforms

User interface

« Data visualisation: 2D, 3D, interactive (you can zoom and rotate!) powered by Makie

« Extensibility: New model components (incl. parameterizations) can be externally defined

« Modularity: Models are constructed from its components, non-defaults are passed on as argument
« Interactivity: SpeedyWeather.jl runs in a notebook or in the REPL as well as from scripts

« Callbacks can be used to inject any piece of code after every time step, e.g. custom output, event
handling, changing the model while it's running

and Julia will compile to these choices just-in-time.

For an overview of the functionality and explanation see the documentation. You are always
encouraged to raise an issue (even it is not actually an issue but an idea, a suggestion or really
anything) describing what you'd like to use SpeedyWeather for. We're keen to help!

Vision and roadmap

Why another model? You may ask. We believe that most currently available are stiff, difficult to use and
extend, and therefore slow down research whereas a modern code in a modern language wouidn't have

1

Deployments 500+
& github-pages 3 hours ago

+ more deployments

Languages

© Julia 100.0%

\ to. We decided to use Julia because it combines the best of Fortran and Pithon: Within a sinile /

Modern code and compute : simple to write, scales, runs on any hardware




Allowing a seamless integration with Al

stable, robust, low abstraction languages

high abstraction, fast evolving languages



Allowing a seamless integration with Al

Data-driven modelling

high abstraction, fast evolving languages

Physics-based modelling
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high abstraction, fast evolving languages



Al-native hybrid climate models ?

Neural general circulation models for

weather and climate
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Stephan Hoyee'*™

Griffin Mooers', Milan Kldwer”, James Lottes', Stephan Rasp', Peter Diben’, Sam Hatfield’,
Pater Battaglia*, Alvaro Sanchez-Gonzalez', Matthew Willson®, Michael P. Brennor™* &

General circulation models (GOMs) are the foundation of weather and climate
prediction', GCMs are physics-based simulators that combine a numerical solver

for large-scale dynamics with tuned representations for small-scale processes such as
cloud formation. Recently, machine-learning models trained on reanalysis data have
achieved comparable or better skill than GCMs for deterministic weather forecasting™,
However, these models have not demonstrated improved ensemble forecasts, or
shown sufficient stability for long-term weather and climate simulations. Here we
present a GCM that combines a differentiable solver for atmospheric dynamics with
machine-learning components and show that it can generate forecasts of deterministic
weather, ensembie weather and climate on par with the best machine-learning and
physics-based methods. NeuralGCM Is competitive with machine-Jlearning models for
one- to ten-day forecasts, and with the European Centre for Medium-Range Weather
Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea
surface temperature, NeuralGCM can accurately track climate metrics for multiple
decades, and climate forecasts with 140-kilometre resolution show emergent
phenomena such as realistic frequency and trajectories of tropical cyclones. For both
weather and climate, our approach offers orders of magnitude compautational savings
over conventional GCMs, although our model does not extrapolate tosubstantially
different future climates. Our results show that end-to-end deep learning is compatible
with tasks performed by conventional GCMs and can enhance the Jarge-scale physical
simulations that are essential for understanding and predicting the Earth system.

Solving the equations for Earth’s atmosphere with general cireula-
tion models {GCMs) is the basis of weather and climate prediction™.
Over the past 70 years, GCMs have been steadily iImproved with better
numerical methods and more detailed physical models, while exploit-
ing faster computers to run at higher resolution. Inside GCMs, the
unresolved physical processes such as clouds, radiation and precipi-
tatkon are represented by semd-empirical parameterizations, Tuning
GCMs to match historical data remains a manual process’, and GCMs
retain many persistenterrors and biases® *. The difficulty of reducing
uncertalnty inlong-term climate projections® and estimating distribu-
tions of extreme weather events™ presents major challenges for climate
mitigation and adaptation.

Recent advances in machine learning have presented an alter-
native for weather forecasting’* "', These models rely solely on
machine-learning techniques, using roughly 40 years of historical
data from the European Center for Medium:Range Weather Forecasts
(ECMWF) reanalysis v5 (ERAS)™ for model training and forecast initiali-
zation, Machine-learning methods have been remarkably successful,

demonstrating state-of the-art deterministic forecasts for 1- to 10-day
weather predictionat afraction of the computational cost of traditional
models"*, Machine-leaming atmospheric models also require consider-
ably less code, for example GraphCast’ has 5,417 lines versus 376,578
lines for the National Oceanic and Atmospheric Administrations FV3
atmospheric model” (see Supplementary Information section A for
details).

Nevertheless, machine-learning approaches have noteworthy
limitations compared with GCMs. Existing machine-fearning models
have focused on deterministic prediction, and surpass deterministic
numerical weather prediction in terms of the aggregate metrics for
which they are trained . However, they do not produce calibrated
uncertainty estimates’, which is essential for useful weather forecasts',
Deterministic machine-fearning models using a mean-squared-crror
loss are rewarded for averaging aver uncertainty, producing unrealis-
tically blurry predictions when optimized for multi-day forecasts™'',
Unlike physical models, machine-fearning models misrepresent derived
(diagnostic) variables such as geostrophic wind™. Furthermore,
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Kochkov et al. (2024)
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Al-native hybrid climate models ?

Kochkov et al. (2024) https://arxiv.org/abs/2311.07222 Total column water, 0-15 days

ERAS NeuralGCM

Hybrid w/ online : non-blurry forecast + stable simulators (runs ~10 years)
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Al-native hybrid climate models ?

Hybrid (physics+ML) ESMs
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Eyring, Gentine, et al., 2024 https://doi.org/10.1038/s41561-024-01527-w

LEGO land:
Versatile models allowing
exploration of advanced

ML workflows Differentiable programming

Harnessing global

observations ! IN earth system models
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Summary

- Why we are augmenting ocean models w/ trained comp.

= - Described how this can be done in practice today
B
aﬂ’\ - Further progress require deeper recast of our models
+
- Exploration w/ new generation of Al-native hybrid models

- EXciting time for cross-disciplinary investigations !
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