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Tools are integrated into systems

Earth System Models Combining models of each components
(IPCC) of the climate system



Tools are integrated into systems
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XiHe: A Data-Driven Model for Global Ocean
Eddy-Resolving Forecasting

Xiang Wang, Renzhi Wang, Ningzi Hu, Pingiang Wang, Peng Huo, Guihua Wang, Huizan Wang,
Senzhang Wang, Junxing Zhu, Jianbo Xu, Jun Yin, Senliang Bao, Cigiang Luo, Ziging Zu, Yi Han, Weimin
Zhang, Kaijun Ren, Kefeng Deng, Jungiang Song

ADSIRCT—Giobal coran Iorecasting & fundamentally nporman 10 SUPPOMt MANNe activiies. The loaseg cpertonal Glotal Ocosn
Forecastng Systems (GOFSs) use physics drven numencal lorecasing models Tal sotve the partal dfferential eguations with
opansive computation Rocently. speciicaly in simosphene wedlther forecasting, dala-crven models fave demonstraled sigaican
potensal 1of Speodng up environmental forecasting by orders of magniiude, but thoee is stil no data driven GOF S that matchas the
racasting acouracy of e rumecrcal GOFSS. In Tis paper, we propase the frst dats-driven 1/ 17° reschison globa ocean
ockly-cedoiving orecating model niemed Xite, which is estabished from the 25-yesr France Marcator Ochan Imernationad’s dady
GLORYS 2 reanalyss data. XMe is a Merarchical transiormer-based framewors couplod with two special designs. One is the

land ocean mark mechanmm ke locusing exchavely on B glotnl coran Croulaton. The cther it Ie 0S0an-spacic block ot
efecively capiuning bo local coean information and globial jeleconnection. Exiensive expenments are conduciod under satelite
observalions, in siu cosenations. and the IV-TT Class 4 evahuation Ssamework of the world's leading cpevational GOFSs om Janvary
2019 10 December 2020. The rosuits domonsirale that Xike achioves sronQer fornecast Derdormances in all testing variables than
eosting adng operational numenical GOFSs including Mercator Ocean Physical SYstem (P5Y4), Global ice Ocoan Prediction
System (QIOPS), BLUEINK OcoanMAPS (BLK), and Forecast Ocean Assimilaton Model (FOAM). Particudarly, e accuracy of cosan
curment fJorecasting of JoMe out 1o 60 days & evon bemer than that of PSY4 in st 10 days. Additionally, Xée is able 10 Sorecast the
Wrge-scale Grodation and the mescscale scddes. Furthermorne, Il can make o 10-Gay forecast n only 036 seconds, which acoslerales
he lorecast speod by thousands of Wmes compared 10 the traditional numerical GOFSs

Index Terms—Global Ocean Forecasang. Deep Loarming, Eddy Resoiving. Data-Oriven. Al for Soence

1 INTRODUCTION

Ovean forecasting is aritically important for many ma-
rine activities. At present, the leading GOFSs (e.g. Mescator
Ocean Physical SYstem (PSY4) and Real-Time Ocean Fore-
cast System (RTOFS)) wse physics-driven models i fluid
mechanics and thermodynamics to predict future ocean
motion states and phenomena based on cusrent ocean con-
ditions [1]. The COFSs adopt numencal methods that rely
on supercomputers to solve the partial differential equa-
tions of the physical modets. Due to their desirable per-
formance, they are operationally run in different countries
worldwide. However, numerical forecasting methods are
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usually computationally expensive and slow. For example,
2 single forecasting simulation in the numerical GOFSs may
take hours on a supercomputer with hundreds of computa-
tional nodes 2], Besides, improving the forecasting accuracy
of these metheds Is exceodingly challenging because they
heavily rely on the human cognitive abilities in understand-
ing, the physical laws of the ocean environment §3).

With the recent advances of Artificial Intelligence (Al)
techmiques, deep kaming methods have been widely ap-
phied in various prediction/forecasting tasks of different
fields and achieved great success, Particularly, some data-
driven Al models have shown the potential in atmosphesy
weather forecasting like Pawgn-Weather B and  Grapi-
Cast [‘I Ihey have achieved comparable or even better
predicion results in global medium-range weather fore-
casting than current leading numwerical weather prediction
(NWP) methods H). B, @), F). Bl 4. One significant
advantage of data-driven models is that they can make
the forecasting thousands or even tens of thousands of
times faster than NWP methods H). Furthermore, they can
automatically leam the spatial-temporal relationships from
massive meteorological data, and effectively capture the
rules of weather changing, without introducing the prior
knowledge of physics mechanisms

Although data-driven models have achieved promising
resulls in atmosphere weather forecasting, how to busld a
more accurate and effiGent data-driven oocun forecasting
maodel remains an open fesearch issue due o the following

https://arxiv.org/abs/2402.02995
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GLONET: MERCATOR'S END-TO-END NEURAL
FORECASTING SYSTEM

A PREFRINT
Anass El Aounl * Quentin Gaudel Charly Regnder Simon Van Geonlp
Marie Drevilloa Yana Drillet Jean-Michel Lellouche
Mercator Ocean International

December 10, 2024

ABSTRACT

Accurale ocean fotecasting is crecial i difforent arcas ranging from sience 1o decisom
making. Recont advancements in data-driven models have shown significant promise,
parscularly in weather forecasting comumunity, but yet no data-deives approaches have
matched the accuracy and the scalability of traditional ghobal ocean forecasting systems
that rely ca physics-driven numerical models and can be very computaticsally expensive,
depending on their spatial resolution or complexity. Here, we introdece GLONET, a global
ocean neural netwoek-based focecasting system, developad by Mercator Ocean Interna-
tional. GLONET is trained on the ghobal Mercator Ocean physical reanallysas GLORYS 12
o integrate physics-based principles theough neural operators and networks, which dy-
namically capture Jocal-glodal imteractions withis a asified, scalable framework, ensuring
high small.scale accuracy and efficsent dynamics. GLONET s performance is assessed and
benchasarked agaisat two other forecasting systems: the global Mercator Ocean asalysis
and focecasting 1/12° high-resolution physical system GLOI2 and a recent neural-based
systens alvo trained froms GLORYSI2, A series of comprehensive vabdasos meteics is
proposed, specifically tadlored for newral network.based ocean forecasting systems, which
extend beyond traditional point-wise error assessments that can istroduce bias sowarnds
nevral actworks optimized pamarily 10 minimaze soch metrics, The prelimsinary evaluation
of GLONET shows proemusing results, for temperature, sea surface height, salinity and
ocean currents, GLONET s experimental daily forocast are accesaable through the Earopean
Digital Twin Ocean platform EDITO.
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Article

Neural general circulation models for
weather and climate

(a)

Forcings — ~

Griffin Moocers', Milan Kldwer’, James Lottes’, Stephan Rasp', Peter Diben’, Sam Hatfield’,
Peter Battaglia*, Alvaro Sanchez-Gonzalez*, Matthew Willson®, Michael P. Brenner'* &

hittps:/fdol.org/10.1038/s41586-024-0774 4y
Received: 13 November 2023

Learned

Accepted: 15 Juﬁo MJ Stephan Hoyer'*™
Published ontine: 22 July 2024 d »
Open access General circulation models (GCMs) are the foundation of weather and climate e nco er

prediction'?. GCMs are physics-based simulators that combine a numerical solver

for large-scale dynamics with tuned representations for small-scale processes such as
cloud formation, Recently, machine-learning models trained on reanalysis data have
achieved comparable or better skill than GCMs for deterministic weather forecasting™,
However, these models have not demonstrated improved ensemble forecasts, or
shown sufficient stability for long-term weather and climate simulations. Here we
present a GCM that combines a differentiable solver for atmospheric dynamics with
machine-learning components and show that it can generate forecasts of deterministic
weather, ensemble weather and climate on par with the best machine-learning and
physics-based methods. NeuralGCM is competitive with machine-learning models for
one-to ten-day forecasts, and with the European Centre for Medium-Range Weather
Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea
surface temperature, NeuralGCM can accurately track climate metrics for multiple
decades, and climate forecasts with 140-kilometre resolution show emergent
phenomena such as realistic frequency and trajectories of tropical cyclones, For both
weather and climate, our approach offers orders of magnitude compautational savings
over conventional GCMs, although our model does not extrapolate tosubstantially
different future climates. Our results show that end-to-end deep learning is compatible
with tasks performed by conventional GCMs and can enhance the large-scale physical

¥ Check for updates

(Learned physics

3t

(Dynamical core\

0

simulations that are essential for understanding and predicting the Earth system.

Solving the equations for Earth's atmosphere with general circula-
tion models (GCMs) is the basis of weather and climate prediction™.
Over the past 70 years, GCMs have been steadily improved with better
numerical methods and more detailed physical models, while exploit-
ing faster computers to run at higher resolution. Inside GCMs, the
unresolved physical processes such as clouds, radiation and precipi-
tation are represented by semi-empirical parameterizations. Tuning
GCMs to match historical data remains a manual process’, and GCMs
retain many persistent errors and biases* *. The difficulty of reducing
uncertainty inlong-term climate projections® and estimating distribu-
tions of extreme weather events” presents major challenges for climate
mitigation and adaptation".

Recent advances in machine learning have presented an alter-
native for weather forecasting** "', These models rely solely on
machine-learning techniques, using roughly 40 years of historical
data from the European Center for Medium:Range Weather Forecasts
(ECMWEF) reanalysis v5 (ERAS)™ for model training and forecast initiali-
zation. Machine-learning methods have been remarkably successful,

demonstrating state-of-the-art deterministic forecasts for 1- to 10-day
weather prediction at afractionof the computational cost of traditional
models"*. Machine leaming atmospheric models also require consider-
ably less code, for example GraphCast® has 5,417 lines versus 376,578
lines for the National Oceanic and Atmospheric Administrations FV3
atmospheric model” (see Supplementary Information section A for
details).

Nevertheless, machine-learning approaches have noteworthy
limitations compared with GCMs. Existing machine-learning models
have focused on deterministic prediction, and surpass deterministic
numerical weather prediction in terms of the aggregate metrics for
which they are trained . However, they do not produce calibrated
uncertainty estimates’, which is essential for useful weather forecasts',
Deterministic machine-dearning models using a mean-squared-crror
loss are rewarded for averaging over uncertainty, producing unrealis-
tically blurry predictions when optimized for multl-day forecasts'",
Unlike physical models, machine-learning models misrepresent derived
(diagnostic) variables such as geostrophic wind™. Furthermore,

Googhe Research, Mountain View, CA, USA “Earth. Atmosphernic and Planetary Sciences. Massachusens insstute of Techaology, Cambridge, NA, USA, "Ewropean Cantre for Medum-Ranpe
Weather forecamts, Reading, UK. ‘Googie Deepiind, London, UK. “School of Engineering end Appled Scnces, Marvard University, Cambrdon, MA, LSA *These suthors contrituted equally
Demitrid Kochiow, Jasrn Yuvel, lan Langrmone, Peter Morgasrd, Jarmse Srmith, Stephan Hoyer. Me-madt dbochhoviooogie com jarnyuwalipoogle com, shoyer@igooghe com
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Hybrid models combining physics and ML
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Augmenting ocean models with ML components

Input with

step n l 0 . parameters

trained to minimise :
+ Z(0) = training objective

0 . parameters

- Improving physical consistency

l - correcting model errors (vs 0bs.)

- accelerating execution (x10-100)

The model is augmented with a trainable component NB @ does not have to be deterministic



ML for ocean models subgrid physics (1/2)

1/10° Edd(;)Resolvin @ @ @
A @ © oceanic macro-scale turbulence
P
AL : - missing terms from resolved quantities
- closures for turbulent processes

(b)

- leveraging hi-res/process model data
- encoded as closed forms or ML models

- avery active field (5-10 papers / months)
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Partee et al. 2022
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ML for ocean models subgrid physics (1/2)
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@@ © oceanic micro-scale turbulence
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M2LINES consortium Machine Learning In
Sane et al. 2023 , Coupled Earth System
https://doi.org/10.1029/2023MS003890 https://m2lines.github.io Modeling
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ML for ocean models subgrid physics (2/2)

Dynamical system Resolved equations

0,X+ZLx+ N(x)=0

0, + LX+ N(X) =N — N(XX)

A 4

Subgrid closure

0, X+ GXx)=0

M)~ N(X) = N(X)

Learning the mapping
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(b)

Learning model error from observations (1/2)

unbiased model
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w/ unbiased observations, analysis increments
compensate for model biais

estimating state-dependent bias corrections
(Leith, 1978; Saha, 1992; DelSole and Hou, 1999)

state-dependent biais corrections provide a
representation of model errors




Learning model error from observations (2/2
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used for estimating model errors
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- NN for learning state-dependant biais
corrections from analysis iIncrements

- w/ applications in GCMs (atmosphere
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- showing success Iin improving the
modeled climate state & forecast skill
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