

PROGRAMME DE RECHERCHE

CLIMAT

PEPR TRACCS Webinar Series | Online, 31 Jan 2025

cnrs

PROGRAMME **DE RECHERCHE** CLIMAT

IGE

Combining physics and machine learning in hybrid climate models

Julien Le Sommer, Institut des Géosciences de l'Environnement, Grenoble

Secrétariat général pour l'investissement

SOMMET CTION SUR L'

PROGRAMME DE RECHERCHE

CLIMAT

PEPR TRACCS Webinar Series | Online, 31 Jan 2025

PROGRAMME DE RECHERCHI ~I IMAT

<u>COMputing PAradigms towards efficient,</u> modular and trainable Climate Models

J. Le Sommer, S. Valcke, Y. Meurdesoif, T. Dubos, P. Rampal

TRACCS-PC5-COMPACT

Secrétariat général pour l'investissement

Drivers for TRACCS-PC5-COMPACT project

Heterogeneous computing architectures Emerging paradigms in scientific computing

Secrétariat général pour l'investissement

New usages of models with climate services

Ambition and positioning of TRACCS-PC5-COMPACT

ESMs as software systems

Secrétariat général pour l'investissement

Ambition and positioning of TRACCS-PC5-COMPACT

ESMs as software systems

- gradual evolution of systems long term engineer positions
- higher risk / reward activities through PhDs / research projects

Secrétariat général pour l'investissement

Computer science

evidence / science based decisions

community / open science driven

A 8-years roadmap

porting codes to GPUs

internal interfaces across subcomponents

Computational efficiency and portability

Modularity, APIs and system-wide design

Our annual meeting will be held next week in Grenoble on Tue Feb 4th

Secrétariat général pour l'investissement

protocols for online inference

neural emulation of components

Al-readiness, emulation and differentiability

Combining physics and machine learning in hybrid climate models

Julien Le Sommer - computational oceanographer Institut des Géosciences de l'Environnement, Grenoble

Objectives of this talk

- how ML is leveraged in computational oceanography
- with methods from the emerging field of SciML
- how this leads to to deep changes in our systems
- and raise interesting questions for climate models

Observations

CNIS

The context of computational oceanography

The context of computational oceanography

physical oceanography

currents, parameters

Macro-turbulence

develops and use **numerical tools** and methods maths, numerics, compute, data

Computational oceanography

understand the functioning

forecast its evolution (timescales)

climate - environnemental changes human activities

internal waves (tides)

Scale interactions, processes

Surface waves

ノンレ

Interactions with components

2.

A key tool : ocean models

Physical models summarize our understanding of physical systems

Physics-based models (ocean circulation models)

Our toolboxes

Observations (in situ/satellite)

Physical models (ocean circulation models)

Tools for understanding but also monitoring and forecasting ocean circulation

Inverse methods (data assimilation)

2

Dr

Observations of the ocean

Observations

satellite

Copernicus Sentinel-3 SLSTR SST 20181106 Sentinel 3 temperature

12 16 20

Sea Surface Temperature (°C)

24 28 32

New platforms

Continuously operated networks

